roundabout,
created on Sunday, 26 May 2024, 14:42:07 (1716734527),
received on Sunday, 26 May 2024, 14:49:33 (1716734973)
Author identity: vlad <vlad.muntoiu@gmail.com>
2f1290bde604aeb56becd071c0e80593e2185da9
runs/detect/train24/args.yaml
@@ -0,0 +1,106 @@
task: detect mode: train model: yolov8n.pt data: yolo.yaml epochs: 12 time: null patience: 100 batch: 16 imgsz: 640 save: true save_period: -1 cache: false device: null workers: 8 project: null name: train24 exist_ok: false pretrained: true optimizer: auto verbose: true seed: 0 deterministic: true single_cls: false rect: false cos_lr: false close_mosaic: 10 resume: false amp: true fraction: 1.0 profile: false freeze: null multi_scale: false overlap_mask: true mask_ratio: 4 dropout: 0.0 val: true split: val save_json: false save_hybrid: false conf: null iou: 0.7 max_det: 300 half: false dnn: false plots: true source: null vid_stride: 1 stream_buffer: false visualize: false augment: false agnostic_nms: false classes: null retina_masks: false embed: null show: false save_frames: false save_txt: false save_conf: false save_crop: false show_labels: true show_conf: true show_boxes: true line_width: null format: torchscript keras: false optimize: false int8: false dynamic: false simplify: false opset: null workspace: 4 nms: false lr0: 0.01 lrf: 0.01 momentum: 0.937 weight_decay: 0.0005 warmup_epochs: 3.0 warmup_momentum: 0.8 warmup_bias_lr: 0.1 box: 7.5 cls: 0.5 dfl: 1.5 pose: 12.0 kobj: 1.0 label_smoothing: 0.0 nbs: 64 hsv_h: 0.015 hsv_s: 0.7 hsv_v: 0.4 degrees: 0.0 translate: 0.1 scale: 0.5 shear: 0.0 perspective: 0.0 flipud: 0.0 fliplr: 0.5 bgr: 0.0 mosaic: 1.0 mixup: 0.0 copy_paste: 0.0 auto_augment: randaugment erasing: 0.4 crop_fraction: 1.0 cfg: null tracker: botsort.yaml save_dir: runs/detect/train24
runs/detect/train24/labels.jpg
runs/detect/train24/labels_correlogram.jpg
runs/detect/train24/train_batch0.jpg
runs/detect/train24/train_batch1.jpg
runs/detect/train25/F1_curve.png
runs/detect/train25/PR_curve.png
runs/detect/train25/P_curve.png
runs/detect/train25/R_curve.png
runs/detect/train25/args.yaml
@@ -0,0 +1,106 @@
task: detect mode: train model: runs/detect/train23/weights/best.pt data: yolo.yaml epochs: 12 time: null patience: 100 batch: 16 imgsz: 640 save: true save_period: -1 cache: false device: null workers: 8 project: null name: train25 exist_ok: false pretrained: true optimizer: auto verbose: true seed: 0 deterministic: true single_cls: false rect: false cos_lr: false close_mosaic: 10 resume: false amp: true fraction: 1.0 profile: false freeze: null multi_scale: false overlap_mask: true mask_ratio: 4 dropout: 0.0 val: true split: val save_json: false save_hybrid: false conf: null iou: 0.7 max_det: 300 half: false dnn: false plots: true source: null vid_stride: 1 stream_buffer: false visualize: false augment: false agnostic_nms: false classes: null retina_masks: false embed: null show: false save_frames: false save_txt: false save_conf: false save_crop: false show_labels: true show_conf: true show_boxes: true line_width: null format: torchscript keras: false optimize: false int8: false dynamic: false simplify: false opset: null workspace: 4 nms: false lr0: 0.01 lrf: 0.01 momentum: 0.937 weight_decay: 0.0005 warmup_epochs: 3.0 warmup_momentum: 0.8 warmup_bias_lr: 0.1 box: 7.5 cls: 0.5 dfl: 1.5 pose: 12.0 kobj: 1.0 label_smoothing: 0.0 nbs: 64 hsv_h: 0.015 hsv_s: 0.7 hsv_v: 0.4 degrees: 0.0 translate: 0.1 scale: 0.5 shear: 0.0 perspective: 0.0 flipud: 0.0 fliplr: 0.5 bgr: 0.0 mosaic: 1.0 mixup: 0.0 copy_paste: 0.0 auto_augment: randaugment erasing: 0.4 crop_fraction: 1.0 cfg: null tracker: botsort.yaml save_dir: runs/detect/train25
runs/detect/train25/confusion_matrix.png
runs/detect/train25/confusion_matrix_normalized.png
runs/detect/train25/labels.jpg
runs/detect/train25/labels_correlogram.jpg
runs/detect/train25/results.csv
@@ -0,0 +1,13 @@
epoch, train/box_loss, train/cls_loss, train/dfl_loss, metrics/precision(B), metrics/recall(B), metrics/mAP50(B), metrics/mAP50-95(B), val/box_loss, val/cls_loss, val/dfl_loss, lr/pg0, lr/pg1, lr/pg2 1, 1.2454, 1.7569, 1.6817, 0.59824, 0.42948, 0.48665, 0.32315, 1.3649, 1.5701, 1.8807, 0.0002374, 0.0002374, 0.0002374 2, 1.2486, 1.7347, 1.6712, 0.62732, 0.44375, 0.4828, 0.30686, 1.4117, 1.6972, 1.9447, 0.00043618, 0.00043618, 0.00043618 3, 1.383, 1.7323, 1.9359, 0.688, 0.41098, 0.48747, 0.29905, 1.4607, 1.6992, 1.9699, 0.00059569, 0.00059569, 0.00059569 4, 1.3672, 1.6813, 1.9174, 0.55711, 0.45539, 0.47952, 0.29467, 1.4141, 1.6376, 1.9483, 0.00053728, 0.00053728, 0.00053728 5, 1.3457, 1.5926, 1.8889, 0.61795, 0.45828, 0.50845, 0.32317, 1.3911, 1.5817, 1.9197, 0.00047838, 0.00047838, 0.00047838 6, 1.2959, 1.5489, 1.8435, 0.68057, 0.44669, 0.5072, 0.3289, 1.3176, 1.5268, 1.8535, 0.00041947, 0.00041947, 0.00041947 7, 1.2501, 1.4741, 1.8115, 0.61363, 0.51986, 0.56462, 0.36514, 1.284, 1.4916, 1.8092, 0.00036057, 0.00036057, 0.00036057 8, 1.2166, 1.4044, 1.7806, 0.56984, 0.56159, 0.58051, 0.37996, 1.2141, 1.4034, 1.7481, 0.00030167, 0.00030167, 0.00030167 9, 1.1816, 1.3483, 1.7416, 0.74203, 0.51274, 0.5991, 0.40524, 1.1808, 1.3177, 1.7051, 0.00024276, 0.00024276, 0.00024276 10, 1.1515, 1.2874, 1.7135, 0.76834, 0.53124, 0.63673, 0.4347, 1.1526, 1.2774, 1.6729, 0.00018385, 0.00018385, 0.00018385 11, 1.1105, 1.227, 1.6783, 0.7746, 0.53733, 0.65685, 0.45276, 1.1192, 1.2198, 1.643, 0.00012495, 0.00012495, 0.00012495 12, 1.0766, 1.2029, 1.6479, 0.75353, 0.57269, 0.66865, 0.46779, 1.0896, 1.2053, 1.6157, 6.6045e-05, 6.6045e-05, 6.6045e-05
runs/detect/train25/results.png
runs/detect/train25/train_batch0.jpg
runs/detect/train25/train_batch1.jpg
runs/detect/train25/train_batch2.jpg
runs/detect/train25/train_batch788.jpg
runs/detect/train25/train_batch789.jpg
runs/detect/train25/train_batch790.jpg
runs/detect/train25/val_batch0_labels.jpg
runs/detect/train25/val_batch0_pred.jpg
runs/detect/train25/val_batch1_labels.jpg
runs/detect/train25/val_batch1_pred.jpg
runs/detect/train25/val_batch2_labels.jpg
runs/detect/train25/val_batch2_pred.jpg
runs/detect/train25/weights/best.pt
runs/detect/train25/weights/last.pt
runs/detect/train26/F1_curve.png
runs/detect/train26/PR_curve.png
runs/detect/train26/P_curve.png
runs/detect/train26/R_curve.png
runs/detect/train26/args.yaml
@@ -0,0 +1,106 @@
task: detect mode: train model: runs/detect/train25/weights/best.pt data: yolo.yaml epochs: 72 time: null patience: 100 batch: 16 imgsz: 640 save: true save_period: -1 cache: false device: null workers: 8 project: null name: train26 exist_ok: false pretrained: true optimizer: auto verbose: true seed: 0 deterministic: true single_cls: false rect: false cos_lr: false close_mosaic: 10 resume: false amp: true fraction: 1.0 profile: false freeze: null multi_scale: false overlap_mask: true mask_ratio: 4 dropout: 0.0 val: true split: val save_json: false save_hybrid: false conf: null iou: 0.7 max_det: 300 half: false dnn: false plots: true source: null vid_stride: 1 stream_buffer: false visualize: false augment: false agnostic_nms: false classes: null retina_masks: false embed: null show: false save_frames: false save_txt: false save_conf: false save_crop: false show_labels: true show_conf: true show_boxes: true line_width: null format: torchscript keras: false optimize: false int8: false dynamic: false simplify: false opset: null workspace: 4 nms: false lr0: 0.01 lrf: 0.01 momentum: 0.937 weight_decay: 0.0005 warmup_epochs: 3.0 warmup_momentum: 0.8 warmup_bias_lr: 0.1 box: 7.5 cls: 0.5 dfl: 1.5 pose: 12.0 kobj: 1.0 label_smoothing: 0.0 nbs: 64 hsv_h: 0.015 hsv_s: 0.7 hsv_v: 0.4 degrees: 0.0 translate: 0.1 scale: 0.5 shear: 0.0 perspective: 0.0 flipud: 0.0 fliplr: 0.5 bgr: 0.0 mosaic: 1.0 mixup: 0.0 copy_paste: 0.0 auto_augment: randaugment erasing: 0.4 crop_fraction: 1.0 cfg: null tracker: botsort.yaml save_dir: runs/detect/train26
runs/detect/train26/confusion_matrix.png
runs/detect/train26/confusion_matrix_normalized.png
runs/detect/train26/labels.jpg
runs/detect/train26/labels_correlogram.jpg
runs/detect/train26/results.csv
@@ -0,0 +1,73 @@
epoch, train/box_loss, train/cls_loss, train/dfl_loss, metrics/precision(B), metrics/recall(B), metrics/mAP50(B), metrics/mAP50-95(B), val/box_loss, val/cls_loss, val/dfl_loss, lr/pg0, lr/pg1, lr/pg2 1, 1.1988, 1.6343, 1.6252, 0.71552, 0.53564, 0.60596, 0.41121, 1.2027, 1.3155, 1.7287, 0.0002374, 0.0002374, 0.0002374 2, 1.1651, 1.5462, 1.5943, 0.70339, 0.5223, 0.58526, 0.3756, 1.3047, 1.4371, 1.8161, 0.00046886, 0.00046886, 0.00046886 3, 1.2839, 1.7545, 1.6838, 0.65521, 0.40005, 0.45801, 0.28967, 1.4184, 1.6151, 1.9186, 0.00069378, 0.00069378, 0.00069378 4, 1.3031, 1.7757, 1.6982, 0.60067, 0.44306, 0.48296, 0.2816, 1.4753, 1.6554, 1.9585, 0.00068455, 0.00068455, 0.00068455 5, 1.2994, 1.7803, 1.6969, 0.59964, 0.4589, 0.48976, 0.30314, 1.4488, 1.6687, 1.9472, 0.00067473, 0.00067473, 0.00067473 6, 1.2903, 1.7813, 1.6937, 0.64599, 0.43202, 0.48886, 0.30768, 1.4419, 1.6271, 1.9539, 0.00066491, 0.00066491, 0.00066491 7, 1.2962, 1.7672, 1.693, 0.61577, 0.46334, 0.49865, 0.31306, 1.4249, 1.6394, 1.9344, 0.00065509, 0.00065509, 0.00065509 8, 1.2747, 1.7301, 1.6728, 0.59719, 0.4333, 0.47928, 0.30085, 1.3884, 1.6793, 1.9025, 0.00064528, 0.00064528, 0.00064528 9, 1.2662, 1.731, 1.6731, 0.62698, 0.4398, 0.48754, 0.30301, 1.4329, 1.6015, 1.9364, 0.00063546, 0.00063546, 0.00063546 10, 1.2412, 1.685, 1.6534, 0.68824, 0.4391, 0.52525, 0.32901, 1.4079, 1.5527, 1.9155, 0.00062564, 0.00062564, 0.00062564 11, 1.2544, 1.6839, 1.6608, 0.67309, 0.47558, 0.54859, 0.34177, 1.3836, 1.4634, 1.8812, 0.00061583, 0.00061583, 0.00061583 12, 1.2367, 1.6518, 1.6391, 0.67504, 0.46868, 0.54732, 0.33433, 1.3916, 1.5137, 1.8844, 0.00060601, 0.00060601, 0.00060601 13, 1.236, 1.657, 1.6464, 0.65773, 0.49529, 0.55864, 0.35637, 1.3269, 1.4954, 1.8521, 0.00059619, 0.00059619, 0.00059619 14, 1.2395, 1.6678, 1.6429, 0.62937, 0.46428, 0.54987, 0.34408, 1.3366, 1.554, 1.8618, 0.00058637, 0.00058637, 0.00058637 15, 1.2318, 1.6301, 1.6374, 0.66738, 0.46978, 0.54819, 0.34204, 1.3434, 1.5095, 1.8593, 0.00057655, 0.00057655, 0.00057655 16, 1.2268, 1.6226, 1.631, 0.61689, 0.51115, 0.56745, 0.35887, 1.3401, 1.4698, 1.8483, 0.00056674, 0.00056674, 0.00056674 17, 1.2161, 1.6069, 1.6264, 0.61482, 0.54849, 0.60744, 0.39442, 1.3208, 1.4486, 1.8275, 0.00055692, 0.00055692, 0.00055692 18, 1.2016, 1.5787, 1.6217, 0.73594, 0.48847, 0.62929, 0.39978, 1.3127, 1.4333, 1.8206, 0.0005471, 0.0005471, 0.0005471 19, 1.2077, 1.5838, 1.6133, 0.66005, 0.51849, 0.59395, 0.37833, 1.2941, 1.355, 1.8025, 0.00053728, 0.00053728, 0.00053728 20, 1.1862, 1.5562, 1.6012, 0.64754, 0.53676, 0.60403, 0.39232, 1.276, 1.3342, 1.7858, 0.00052747, 0.00052747, 0.00052747 21, 1.2036, 1.5828, 1.6176, 0.67544, 0.56507, 0.63688, 0.41299, 1.2662, 1.3772, 1.7796, 0.00051765, 0.00051765, 0.00051765 22, 1.1881, 1.537, 1.6013, 0.71446, 0.54732, 0.63539, 0.40828, 1.2728, 1.3253, 1.7828, 0.00050783, 0.00050783, 0.00050783 23, 1.1732, 1.5116, 1.5945, 0.64473, 0.58321, 0.64178, 0.41881, 1.2397, 1.3173, 1.7552, 0.00049801, 0.00049801, 0.00049801 24, 1.175, 1.5267, 1.5913, 0.68893, 0.56641, 0.64711, 0.42174, 1.2415, 1.308, 1.7649, 0.0004882, 0.0004882, 0.0004882 25, 1.1677, 1.4978, 1.5837, 0.70344, 0.56616, 0.65972, 0.4241, 1.2343, 1.2892, 1.7446, 0.00047838, 0.00047838, 0.00047838 26, 1.1673, 1.4994, 1.5926, 0.68324, 0.54891, 0.63361, 0.42194, 1.2118, 1.3245, 1.7272, 0.00046856, 0.00046856, 0.00046856 27, 1.1527, 1.4707, 1.5728, 0.69431, 0.55991, 0.65642, 0.44587, 1.1794, 1.2387, 1.7064, 0.00045874, 0.00045874, 0.00045874 28, 1.1499, 1.4699, 1.5701, 0.71564, 0.57844, 0.67109, 0.44929, 1.1749, 1.2388, 1.7016, 0.00044893, 0.00044893, 0.00044893 29, 1.1407, 1.4579, 1.5605, 0.72666, 0.59582, 0.69061, 0.46453, 1.1735, 1.1986, 1.7092, 0.00043911, 0.00043911, 0.00043911 30, 1.1432, 1.4417, 1.5634, 0.76234, 0.62325, 0.71536, 0.47305, 1.1553, 1.186, 1.6785, 0.00042929, 0.00042929, 0.00042929 31, 1.1423, 1.4299, 1.5571, 0.80203, 0.60151, 0.72524, 0.47755, 1.1551, 1.1835, 1.6732, 0.00041947, 0.00041947, 0.00041947 32, 1.1319, 1.424, 1.545, 0.73093, 0.60379, 0.70759, 0.47579, 1.1385, 1.1944, 1.6709, 0.00040966, 0.00040966, 0.00040966 33, 1.1225, 1.4137, 1.5547, 0.73209, 0.61232, 0.70041, 0.47874, 1.1325, 1.1727, 1.6482, 0.00039984, 0.00039984, 0.00039984 34, 1.1195, 1.397, 1.5423, 0.74336, 0.62722, 0.71766, 0.48394, 1.1349, 1.1657, 1.6535, 0.00039002, 0.00039002, 0.00039002 35, 1.1026, 1.3755, 1.5312, 0.79773, 0.60304, 0.72471, 0.494, 1.1215, 1.1327, 1.643, 0.0003802, 0.0003802, 0.0003802 36, 1.0975, 1.3666, 1.5238, 0.71738, 0.63053, 0.70708, 0.48114, 1.1247, 1.1347, 1.6316, 0.00037039, 0.00037039, 0.00037039 37, 1.0978, 1.3558, 1.525, 0.79357, 0.62456, 0.74372, 0.50797, 1.0883, 1.0885, 1.6011, 0.00036057, 0.00036057, 0.00036057 38, 1.0956, 1.3594, 1.5259, 0.75235, 0.64187, 0.73529, 0.50795, 1.0879, 1.0711, 1.603, 0.00035075, 0.00035075, 0.00035075 39, 1.0783, 1.327, 1.5053, 0.76556, 0.63619, 0.73629, 0.50883, 1.0833, 1.067, 1.5981, 0.00034094, 0.00034094, 0.00034094 40, 1.0904, 1.3405, 1.5252, 0.76977, 0.66331, 0.7618, 0.5298, 1.0679, 1.062, 1.591, 0.00033112, 0.00033112, 0.00033112 41, 1.0832, 1.3186, 1.5119, 0.77606, 0.65205, 0.75525, 0.52875, 1.0561, 1.04, 1.5721, 0.0003213, 0.0003213, 0.0003213 42, 1.076, 1.3241, 1.5055, 0.7809, 0.66753, 0.7575, 0.53674, 1.0499, 1.0406, 1.5679, 0.00031148, 0.00031148, 0.00031148 43, 1.0636, 1.3094, 1.4996, 0.78695, 0.70415, 0.78465, 0.55208, 1.0302, 1.0249, 1.5554, 0.00030167, 0.00030167, 0.00030167 44, 1.0657, 1.2992, 1.5006, 0.76796, 0.69882, 0.78106, 0.55793, 1.0235, 1.01, 1.547, 0.00029185, 0.00029185, 0.00029185 45, 1.0516, 1.2788, 1.4849, 0.76804, 0.68947, 0.77423, 0.54193, 1.0347, 1.0169, 1.5545, 0.00028203, 0.00028203, 0.00028203 46, 1.0447, 1.2599, 1.4786, 0.76548, 0.70777, 0.78697, 0.55245, 1.0042, 1.0011, 1.5319, 0.00027221, 0.00027221, 0.00027221 47, 1.0389, 1.2531, 1.4754, 0.79237, 0.70125, 0.7886, 0.55636, 1.004, 0.98191, 1.5235, 0.0002624, 0.0002624, 0.0002624 48, 1.0395, 1.2434, 1.4788, 0.83748, 0.67824, 0.79986, 0.58049, 0.98729, 0.95892, 1.5102, 0.00025258, 0.00025258, 0.00025258 49, 1.0497, 1.2658, 1.4853, 0.81021, 0.6926, 0.8096, 0.57719, 0.9882, 0.9557, 1.5045, 0.00024276, 0.00024276, 0.00024276 50, 1.0272, 1.23, 1.462, 0.80619, 0.70858, 0.80318, 0.58335, 0.97643, 0.94805, 1.4989, 0.00023294, 0.00023294, 0.00023294 51, 1.0202, 1.228, 1.4646, 0.82875, 0.6988, 0.80751, 0.58193, 0.97004, 0.94682, 1.4929, 0.00022313, 0.00022313, 0.00022313 52, 1.0166, 1.2224, 1.4641, 0.85802, 0.70881, 0.82189, 0.60725, 0.95412, 0.9438, 1.477, 0.00021331, 0.00021331, 0.00021331 53, 1.0117, 1.1956, 1.4538, 0.8497, 0.70844, 0.81575, 0.59618, 0.95287, 0.92471, 1.4776, 0.00020349, 0.00020349, 0.00020349 54, 1.002, 1.2102, 1.4541, 0.81828, 0.73601, 0.82009, 0.60322, 0.94575, 0.91469, 1.4675, 0.00019367, 0.00019367, 0.00019367 55, 1.0109, 1.2077, 1.4553, 0.84589, 0.73919, 0.83307, 0.61589, 0.94098, 0.90046, 1.4588, 0.00018385, 0.00018385, 0.00018385 56, 0.99031, 1.1758, 1.4389, 0.85519, 0.7212, 0.83421, 0.61717, 0.92411, 0.89088, 1.4473, 0.00017404, 0.00017404, 0.00017404 57, 0.99767, 1.1813, 1.444, 0.8606, 0.72936, 0.84081, 0.61989, 0.92766, 0.88689, 1.4469, 0.00016422, 0.00016422, 0.00016422 58, 1.005, 1.1828, 1.4459, 0.85553, 0.74149, 0.83972, 0.62351, 0.92472, 0.8919, 1.4439, 0.0001544, 0.0001544, 0.0001544 59, 0.99548, 1.1655, 1.4382, 0.87673, 0.73738, 0.84715, 0.62791, 0.91504, 0.87232, 1.4347, 0.00014458, 0.00014458, 0.00014458 60, 0.98489, 1.1526, 1.432, 0.84774, 0.76033, 0.84579, 0.62803, 0.91397, 0.86337, 1.4359, 0.00013477, 0.00013477, 0.00013477 61, 0.98179, 1.146, 1.4298, 0.85791, 0.74316, 0.84895, 0.63315, 0.90232, 0.84648, 1.4224, 0.00012495, 0.00012495, 0.00012495 62, 0.97031, 1.1357, 1.425, 0.86577, 0.75392, 0.85344, 0.63537, 0.89817, 0.85546, 1.4215, 0.00011513, 0.00011513, 0.00011513 63, 0.94965, 0.96612, 1.5097, 0.83429, 0.76914, 0.84767, 0.62405, 0.89128, 0.8572, 1.4103, 0.00010531, 0.00010531, 0.00010531 64, 0.92291, 0.9029, 1.4843, 0.85587, 0.76157, 0.85575, 0.63278, 0.87426, 0.84049, 1.3917, 9.5498e-05, 9.5498e-05, 9.5498e-05 65, 0.90134, 0.87851, 1.4778, 0.87574, 0.74225, 0.8583, 0.64823, 0.8564, 0.81978, 1.3785, 8.568e-05, 8.568e-05, 8.568e-05 66, 0.88992, 0.85875, 1.4538, 0.88084, 0.76256, 0.86349, 0.65391, 0.84161, 0.81003, 1.3641, 7.5862e-05, 7.5862e-05, 7.5862e-05 67, 0.86798, 0.84018, 1.4374, 0.87852, 0.76189, 0.86538, 0.65835, 0.83561, 0.80201, 1.3562, 6.6045e-05, 6.6045e-05, 6.6045e-05 68, 0.87422, 0.83475, 1.4435, 0.86943, 0.78194, 0.87303, 0.66794, 0.83074, 0.79291, 1.3505, 5.6227e-05, 5.6227e-05, 5.6227e-05 69, 0.85585, 0.82052, 1.4258, 0.88106, 0.77257, 0.87397, 0.66248, 0.82326, 0.78925, 1.3436, 4.641e-05, 4.641e-05, 4.641e-05 70, 0.8568, 0.81792, 1.4226, 0.89624, 0.76665, 0.87613, 0.66944, 0.81948, 0.7759, 1.3381, 3.6592e-05, 3.6592e-05, 3.6592e-05 71, 0.85176, 0.80666, 1.4226, 0.86772, 0.78302, 0.8753, 0.67055, 0.81357, 0.77657, 1.3324, 2.6775e-05, 2.6775e-05, 2.6775e-05 72, 0.85717, 0.81365, 1.4255, 0.88814, 0.78351, 0.87834, 0.67415, 0.80891, 0.77274, 1.3284, 1.6957e-05, 1.6957e-05, 1.6957e-05